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Freshwater Ecoregions of the
World: A New Map of Biogeo-
graphic Units for Freshwater
Biodiversity Conservation

ROBIN ABELL, MICHELE L. THIEME, CARMEN REVENGA, MARK BRYER, MAURICE KOTTELAT, NINA BOGUTSKAYA,
BRIAN COAD, NICK MANDRAK, SALVADOR CONTRERAS BALDERAS, WILLIAM BUSSING, MELANIE L. J. STIASSNY,
PAUL SKELTON, GERALD R. ALLEN, PETER UNMACK, ALEXANDER NASEKA, REBECCA NG, NIKOLAI SINDOREF,
JAMES ROBERTSON, ERIC ARMIJO, JONATHAN V. HIGGINS, THOMAS J. HEIBEL, ERIC WIKRAMANAYAKE, DAVID
OLSON, HUGO L. LOPEZ, ROBERTO E. REIS, JOHN G. LUNDBERG, MARK H. SABAJ PEREZ, AND PAULO PETRY

We present a new map depicting the first global biogeographic regionalization of Earth’s freshwater systems. This map of freshwater ecoregions is
based on the distributions and compositions of freshwater fish species and incorporates major ecological and evolutionary patterns. Covering
virtually all freshwater habitats on Earth, this ecoregion map, together with associated species data, is a useful tool for underpinning global and
regional conservation planning efforts (particularly to identify outstanding and imperiled freshwater systems); for serving as a logical framework
for large-scale conservation strategies; and for providing a global-scale knowledge base for increasing freshwater biogeographic literacy. Preliminary
data for fish species compiled by ecoregion reveal some previously unrecognized areas of high biodiversity, highlighting the benefit of looking at the
world’s freshwaters through a new framework.
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Growth of the human population, rising consumption,
and rapid globalization have caused widespread de-
gradation and disruption of natural systems, especially in
the freshwater realm. Freshwater ecosystems have lost a greater
proportion of their species and habitat than ecosystems on
land or in the oceans, and they face increasing threats from
dams, water withdrawals, pollution, invasive species, and
overharvesting (MEA 2005, Revenga et al. 2005). Freshwater

ecosystems and the diverse communities of species found in
lakes, rivers, and wetlands may be the most endangered of all
(MEA 2005).

These stressed systems support an extraordinarily high
proportion of the world’s biodiversity. In terms of area, fresh-
water ecosystems occupy only 0.8% of Earth’s surface, but they
are estimated to harbor at least 100,000 species, or nearly 6%
of all described species (Dudgeon et al. 2006). Each year,
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new freshwater species are described. For South America
alone, about 465 new freshwater fish species have been de-
scribed in the last five years (Eschmeyer 2006), a figure that
corresponds to a new species every four days. The presence
of species confined to small ranges is also unusually high in
freshwater ecosystems; for example, 632 animal species have
been recorded as endemic to Lake Tanganyika (Groombridge
and Jenkins 1998).

Despite this combination of extraordinary richness, high
endemism, and exceptional threat, few broadscale conserva-
tion planning efforts have targeted freshwater systems and their
dependent species. This relative inattention derives in part
from an acute lack of comprehensive, synthesized data on the
distributions of freshwater species (Revenga and Kura 2003).
The most exhaustive recent global inventory of freshwater taxa
acknowledges serious survey gaps and assigns species distri-
butions only to the level of continent (Lévéque et al. 2005).
Such inventories are valuable for highlighting research pri-
orities and providing a global picture of how taxonomic di-
versity compares across continents, but they have limited
utility for conservation planning efforts, for which the largest
planning unit is often the river basin or ecoregion.

A global freshwater regionalization

Ecoregions are a widely recognized and applied geospatial unit
for conservation planning, developed to represent the patterns
of environmental and ecological variables known to influence
the distribution of biodiversity features at broad scales (Groves
et al. 2002). Building on the work of Dinerstein and col-
leagues (1995), we define a freshwater ecoregion as a large area
encompassing one or more freshwater systems with a distinct
assemblage of natural freshwater communities and species.
The freshwater species, dynamics, and environmental con-
ditions within a given ecoregion are more similar to each other
than to those of surrounding ecoregions, and together form
a conservation unit. Ecoregion boundaries are not necessar-
ily determined by the turnover of species ranges (McDonald
et al. 2005) but are intended to describe broad patterns of
species composition and associated ecological and evolu-
tionary processes.

Ecoregion delineation benefits from the best available data
describing species and systems ecology, but can proceed with
imperfect information (Wikramanayake et al. 2002). Global
ecoregion frameworks have already been developed for the
terrestrial and, more recently, marine realms, both of which
are characterized by their own data limitations (Olson et al.
2001, Spalding et al. 2007). In this article we demonstrate how
the ecoregion concept has been applied to freshwater systems,
and present the first global map of freshwater ecoregions—
a starting point for conservation planning anywhere on Earth.

Ecoregions have typically been delineated to represent
patterns of potential vegetation (Olson et al. 2001) and have
at times been used to characterize regional differences in
water quality as well (Omernik 1987). Terrestrial ecoregions
are delineated largely on the basis of climate, physiography,
and vegetation types, but different features are often domi-
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nant in shaping the broadscale distributions of freshwater
species. As Tonn (1990) described, the species occurring in
a given river reach, lake, spring, or wetland will be a function
of a hierarchy of continental-scale filters (including moun-
tain building, speciation, and glaciation) that have defined large
biogeographic patterns; regional-scale filters (such as broad
climatic and physiographic patterns, and dispersal barriers
such as regional catchments); and subregional and finer-
scale habitat filters (e.g., distinct physiographic types and
macrohabitats) acting on the regional species pool. Freshwater
ecoregions capture the patterns generated primarily by con-
tinental- and regional-scale filters.

Of these filters, dispersal barriers in the form of catch-
ment divides (also called watersheds) are distinctive to fresh-
waters. Unlike terrestrial species or those with aerial or
wind-dispersed life stages, obligate freshwater species—those
confined to the freshwater environment and unable to move
via land, air, or sea—generally cannot disperse from one un-
connected catchment to another. Furthermore, all species
dependent on freshwater systems, whether or not they are con-
fined to the aquatic environment, are to some extent affected
by the hydrological and linked ecological processes of the
catchments where they live. As a result, catchments strongly
influence broad freshwater biogeographic patterns in most re-
gions. There are exceptions, however. Tectonic movements
have in some cases separated once-joined catchments, al-
lowing for further speciation. Also, natural drainage evolution
over geological time includes river piracy, which severs con-
nections and provides new interdrainage links that reconform
systems. The freshwater ecoregions of the world presented here
reflect both the hydrological underpinning of freshwater fish
species distributions as well as historical shifts in landmasses
and consequent evolutionary processes.

Ecoregion delineation and species list compilation

No global biogeographic framework for freshwater species was
available as the foundation for our map. The applicability of
Wallace’s (1876) and Udvardy’s (1975) zoogeographic realms
to most freshwater taxa is unresolved (Berra 2001, Vinson and
Hawkins 2003), and these divisions are too large for conser-
vation planning endeavors. Several examinations of global
freshwater biogeography (e.g., Banarescu 1990) provided in-
formation at somewhat finer scales but could not be clearly
translated into seamless ecoregion delineations. Where
appropriate, we adapted previous continental efforts. For
North America, Africa, and Madagascar, we updated region-
alizations outlined in two previously published volumes
(Abell et al. 2000, Thieme et al. 2005), but we excluded a
prior delineation for Latin America and the Caribbean (Ol-
son et al. 1998) because the approach differed markedly from
our current methodology, and data have improved substan-
tially since its development (e.g., Reis et al. 2003). We exam-
ined but chose to exclude the 25 European regions of Illies’s
impressive Limnofauna Europaea (1978) because the ap-
proach for delineating those regions differed considerably from
ours: those regions were based on the distributions of 75
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different taxonomic groups and were drawn without reference
to catchments. Moreover, neither ecological nor evolutionary
processes figured in those delineations. A complete list of all
references and experts consulted in the process of delineat-
ing ecoregions is available online (www.feow.org).

We assembled our global map of freshwater ecoregions
using the best available regional information describing fresh-
water biogeography, defined broadly to include the influ-
ences of phylogenetic history, palacogeography, and ecology
(Banarescu 1990). We restricted our analyses to information
describing freshwater fish species distributions, with a few
exceptions for extremely data-poor regions and inland seas,
where some invertebrates and brackish-water fish were
considered, respectively. We focused on freshwater fish for
several reasons. On a global scale, fish are the best-studied
obligate aquatic taxa. Detailed information exists for other
freshwater taxa in regions like North America and Europe, but
the consideration of such groups in a global analysis would
be difficult, given the wide variation in available data (Balian
etal. 2008). Freshwater dispersant fish species—those unable
to cross saltwater barriers—are better zoogeographic indicators
than freshwater invertebrates, which can often disperse over
land, survive in humid atmospheres outside water, or be
transported between freshwaters (Banarescu 1990). Finally,
the distributions of obligate aquatic invertebrate groups in
general respond to ecological processes at localized scales
that are too small to be meaningful for ecoregion delineation
(Wasson et al. 2002). Therefore, fish serve as proxies for the
distinctiveness of biotic assemblages. We recognize that analy-
ses of other taxonomic groups would almost certainly reveal
different patterns for some regions, and that our results are
scale dependent (Paavola et al. 2006). Our near-exclusive
focus on fish is a departure from earlier continental eco-
regionalization exercises (Abell et al. 2000, Thieme et al.
2005), and we have updated the ecoregion delineations
accordingly.

mmmm— Articles

The available data for describing fish biogeography vary
widely. In the United States, it is possible to map presence/
absence data for all freshwater fish species to subbasins aver-
aging about 2025 square kilometers (km?) in size (NatureServe
2006). But for many of the world’s species, occurrence data
are limited to a small number of irregularly surveyed systems.
Large parts of the massive Congo basin remain unsampled,
for instance, with most sampling occurring near major towns
and most taxonomic studies of the region dating from the
1960s. Problems with taxonomy and species concepts ham-
per broadscale analyses even where systems have been rea-
sonably well sampled (Lundberg et al. 2000). Although
addressing many of these problems is beyond the scope of this
project, in our analyses we have attempted to minimize
nomenclatural errors by normalizing species names with
Eschmeyer’s Catalog of Fishes (2006; www.calacademy.org/
research/ichthyology/catalog/).

Freshwater fish patterns were analyzed separately for
different regions of the world to account for data variability.
The geographic scope of major information sources largely
defined those regions (table 1). Information sources were
typically taxonomic works, some of which included bio-
geographical analyses. Leading ichthyologists delineated
ecoregions primarily by examining the distributions of en-
demic species, genera, and families against the backdrop of
an area’s dominant habitat features and the presence of eco-
logical (e.g., large concentrations of long-distance migratory
species) and evolutionary (e.g., species flocks) phenomena.
More than 130 ichthyologists and freshwater biogeographers
contributed to the global map by either delineating or re-
viewing ecoregions.

Data gaps and biogeographic drivers resulted in the use of
slightly different criteria among and even within some regions
(table 2, box 1). Where fish species data were reasonably
comprehensive and available at subbasin or finer scales, we
attributed species distributions to catchments to facilitate
evaluation of biogeographic patterns in a bottom-up

Table 1. Regional information sources used for ecoregion delineations.

Region Primary information source
Africa Roberts 1975, Skelton 1994, Lévéque 1997, Thieme et al. 2005
Middle East No regional information sources available.

Former USSR
Remainder of Eurasia

No regional information sources available.

Australasia McDowall 1990, Allen 1991, Unmack 2001, Allen et al. 2002
Oceania Keith et al. 2002

Canada Scott and Crossman 1998

United States Maxwell et al. 1995, Abell et al. 2000

Mexico Contreras-Balderas 2000, Miller et al. 2005

Central America Bussing 1976, CLOFFSCA (Reis et al. 2003)

Caribbean Rauchenberger 1988, Burgess and Franz 1989

South America CLOFFSCA (Reis et al. 2003), Menni 2003

For Europe: Kottelat and Freyhof 2007; no regionwide information sources for Asia.

Note: In many cases, these same sources were used to compile species lists. A full bibliography with additional publications,
which along with unpublished data often constituted the greater part of inputs to ecoregion delineations and species lists, is
available at the Web site www.feow.org. Every region also benefited from expert input; individual contributors are listed in the
acknowledgments section and at the Web site. Regions in some cases correspond to politically rather than biophysically
defined units to take advantage of existing information sources and expertise.
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approach. For example, a new high-resolution hydrographic
dataset (HydroSHEDS; www.wwfus.org/freshwater/hydrosheds.
¢fm) for South America provided fine-scale catchment maps
that, in conjunction with newly synthesized species data (Reis
et al. 2003), aided in the assessment of biogeography. In
regions without extensive species data, or where major basins
support highly similar faunas as a result of recent glaciation,
a top-down analysis used qualitative expert knowledge of
distinctive species and assemblages to map major bio-
geographic patterns (table 2). Ecoregional boundaries result-
ing from either approach, therefore, largely coincide with
catchment boundaries.

Whereas overall there is correspondence between catch-
ments and ecoregion boundaries, unconnected neighboring
catchments were in some cases grouped together, where
strong biogeographic evidence indicates that landscape or
other features overrode contemporary hydrographic integrity.
For example, owing to historic drainage evolution and
similarities in fauna, Africa’s southern temperate highveld
combines headwaters of coastal basins that drain to the
Indian Ocean with those of the Atlantic-draining Orange
basin. Considerable faunal exchange of the headwaters of
the Orange River system with that of the coastal systems may
have occurred as the coastal rivers eroded their basins at a faster
rate than the adjacent Orange tributaries (Skelton et al. 1995).

These and other examples demonstrate that historical geo-
graphic events and current hydrology may have conflicting
effects on the fish fauna of a particular region and thereby
argue for different boundaries. The decision to weigh some
effects more strongly than others was made on a case-by-case
basis, and it is acknowledged that additional data may favor
alternative delineations.

With the exception of islands, individual freshwater eco-
regions typically cover tens of thousands to hundreds of
thousands of square kilometers (Maxwell et al. 1995). Eco-
region size varies in large part because of landscape history.
Regions with depauperate faunas resulting from recent glacia-
tion events tend to have large ecoregion sizes, as do those dom-
inated by very large river systems (e.g., much of South
America). Regions with recent tectonic activity or smaller,
more isolated freshwater systems often are divided into smaller
ecoregions. For example, central Mexico has experienced
intermittent isolation and exchange between basins owing to
active mountain-building processes leading to small, frag-
mented systems with distinct faunas. We acknowledge that
data quality may also influence the size of ecoregions; for in-
stance, the entire Amazon is currently divided into only 13
ecoregions, but better data on species occurrences within
major subbasins would most likely support finer delineations.

Table 2. Basic ecoregion delineation approaches for individual regions.

Region Delineation approach

Africa Using Roberts (1975) as a starting point, ecoregions were delineated using a top-down qualitative assessment that
incorporated expert knowledge and divisions of major river basins. In a few cases where basin divides do not circumscribe
species distributions or where basins contain internal barriers to dispersal, ecoregions straddle or divide basins.

Middle East Species lists were generated for whole drainage basins, which were then either combined with smaller catchments that

Former USSR

Remainder of Eurasia

Australasia

Oceania
Canada

United States

Mexico

Central America

Caribbean

South America

were very similar faunistically (minor desert basins, for example) or subdivided on the basis of different ecologies (e.g., the
Tigris-Euphrates with lowland marshes and upland streams).

A species/genera/family presence/absence matrix was compiled for a hierarchy of hydrographic units, and cluster analysis
and ordination techniques (Primer v.6 statistics software) were employed to assess biotic similarities among hydrographic
units and to identify major faunal breaks.

For Southeast Asia and southern Europe, a bottom-up approach employing both published and unpublished field data and
expert assessment was used. East Asian, northern European, and eastern European ecoregions were delineated through a
top-down process using major basins as a starting point and incorporating traditionally recognized zoogeographic patterns
where appropriate.

For Australia, ecoregions were adapted from Allen and colleagues’ (2002) and Unmack’s (1991) “freshwater fish biogeo-
graphic provinces”; provinces were derived through similarity analyses, parsimony analysis, and drainage-based plots of
species ranges. For New Guinea, “subprovinces” of Allen (1991) were modified (primarily combined) on the basis of expert
input. For New Zealand and other islands and island groups, islands were placed in ecoregions on the basis of expert
input.

Islands and island groups were placed in ecoregions on the basis of distinctive (endemic or near-endemic) fish faunas.

Separate cluster analyses were conducted on fish occurrence in the secondary watersheds in each of the nine primary
watersheds in Canada.

The “subregions” of Maxwell and colleagues (1995) were adopted, with relatively small modifications made following input
by regional specialists, especially the Endangered Species Committee of the American Fisheries Society.

Ecoregion delineations were based on qualitative similarity/dissimilarity assessments of major basins, using the standard
administrative hydrographical regions of the Mexican federal government. Subregions within major basins were recoghized
as separate ecoregions when the fish fauna was sufficiently distinctive.

Fish provinces from Bussing (1976) were revised and subdivided on the basis of the application of the similarity index to
subbasin fish presence/absence data.

Ecoregions from Olson and colleagues (1998) were modified on the basis of similarity analyses of island-by-island species
lists and expert input.

Ecoregion delineations were based on qualitative similarity/dissimilarity assessments of catchments, resulting in aggrega-
tion/disaggregation. See box 1 for additional information.

Note: Some of the variations resulting from differences in data quality and biogeographic drivers across and within regions are noted. For some regions,
subecoregions (described at www.feow.org) were delineated to capture finer-scale patterns than could be represented by ecoregions.
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Box 1. Example of criteria applied to ecoregion

delineation: South America.

The delineation process for South America followed a step-
wise process of subdivision of the continent’s major drainage
systems. Delineation started with the historically recognized
major ichthyographic provinces exemplified in Gery (1969)
and Ringuelet (1975) and proceeded with subdivision at finer
scales using regionalized data on fish distributions.

The criteria for determining the merit of delineating an eco-
region were not uniform across the continent as a result of
localized faunistic differences. In some areas, delineations

were based on family-level data, whereas in others, faunistic
turnover at lower taxonomic levels was the criterion. For
instance, astroblepid catfishes are distinct components of high-
elevation freshwaters along the Andes forefront, and that fami-
ly’s distribution was critical to informing the delineation of the
high Andean ecoregions. On the other side of the continent
along the Atlantic coast, we used the presence or absence of
endemic assemblages of the genus Trichomycterus, several gen-
era of the subfamily Neoplecostomatinae, and the presence or
absence of annual killifish genera and species to distinguish
distinct drainage complexes from one another.

In the piedmont zones and in contact areas between lowlands
and geologic shield areas, we used indicator groups to deter-
mine where along the elevation/slope gradient the fauna was
changing. The distribution of lowland forms was matched
with forms found in higher-gradient systems to establish
where one group was dropping out and the other started
occurring. This transition zone was then established as the
operational boundary between connecting ecoregions.

For areas like Patagonia, the Titicaca altiplano, and the Mara-
caibo basin, the uniqueness of the fauna, often occurring with-
in clearly defined geographic areas, permitted reasonably
straightforward delineations. In the larger river basin systems
where there are no clear boundaries, the ecoregional limits are
the best approximation, given the current data.

The process of delineating ecoregions required compiling
and synthesizing information on the distributions of fish
species. A logical and practical extension of the delineations
was the compilation of fish species lists for each ecoregion.
For the United States, NatureServe provided presence/absence
data for individual species, coded to eight-digit hydrologic unit
codes (HUCs); these HUC occurrences were then translated
to ecoregions, and the data were manually cleaned of erro-
neous occurrences derived from introductions and prob-
lematic records. These species lists were then merged with
those from Canada and Mexico for transnational ecoregions.
For all other ecoregions, data came from the published liter-
ature, as well as from gray literature and unpublished sources
(see table 1; a full bibliography is available at www.feow.org).
In all cases, experts served as gatekeepers of these data to en-
sure that lists were based on the best available information,
both in terms of distributions and nomenclature. Introduced
species were removed from the tallies presented here, as were
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undescribed species. Confirmed extinct species (Ian J. Har-
rison, American Museum of Natural History, New York, per-
sonal communication, 29 March 2007) were excluded, but
extirpated species were included to acknowledge restoration
opportunities. Endemic species, defined as those occurring
only in a single ecoregion, were identified first by experts and
cross-checked using a species database constructed for this
project, which includes more than 14,500 described fish
species. Species were coded as freshwater, brackish, or marine
using data from FishBase (www.fishbase.org), and species
with only brackish or marine designations were omitted
from the richness and endemism totals reported here.

Freshwater ecoregional map and species results

Our map of freshwater ecoregions contains 426 units, covering
nearly all nonmarine parts of the globe, exclusive of Antarc-
tica, Greenland, and some small islands (figure 1; a full leg-
end is available at www.feow.org). There is large variation in
the area of individual ecoregions. Large ecoregions, such as
the dry Sahel (4,539,429 km?), tend to be found in more de-
pauperate desert and polar regions exhibiting low species
turnover. Smaller ecoregions are typically found in noncon-
tinental settings where systems are by nature smaller and
species turnover is higher, as in the Indo-Malay region. The
smallest ecoregion, at 23 km?, is Cocos Island (Costa Rica);
the average ecoregion size is 311,605 km?. Ecoregions ranged
from those encompassing only 1 country to those straddling
16 countries (central and western Europe ecoregion).

In total, we assigned more than 13,400 described freshwater
fish species to ecoregions, of which more than 6900 were
assigned to single ecoregions (i.e., endemic). Examination of
the fish species data synthesized by ecoregion confirms some
well-known patterns and highlights others unknown to many
conservationists, managers, and policymakers working at
regional or global scales (figures 2a—2d). In agreement with
previous global assessments (Groombridge and Jenkins 1998,
Revenga et al. 1998), our analysis identifies as outstanding for
both fish richness and endemism systems that include large
portions of Africa’s Congo basin, the southern Gulf of Guinea
drainages, and Lakes Malawi, Tanganyika, and Victoria; Asia’s
Zhu Jiang (Pearl] River) basin and neighboring systems; and
large portions of South America’s Amazon and Orinoco
basins. Areas confirmed for globally high richness include
Asia’s Brahmaputra, Ganges, and Yangtze basins, as well as large
portions of the Mekong, Chao Phraya, and Sitang and Ir-
rawaddy; Africa’s lower Guinea; and South America’s Parana
and Orinoco. When richness is adjusted for ecoregion area,
additional systems such as the Tennessee, Cumberland, Mo-
bile Bay, Apalachicola, and Ozark highlands in the southeastern
United States; portions of Africa’s Niger River Basin; the
islands of New Caledonia, Vanuatu, and Fiji; China’s Hainan
Island; and large parts of Sumatra and Borneo, among many
other areas, are also especially noteworthy.

Numerous systems previously identified as highly endemic
for fish were confirmed, as measured by either numbers of en-
demic species or percentage endemism. A subset includes
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Number of freshwater fish species

ntage freshwater fish species endemism

Number of endemic freshwater fish species

Freshwater fish species per ecoregion area

Figure 2. Preliminary freshwater fish species data for ecoregions: (a) species richness, (b) number of endemic species, (c)
percentage endemism, and (d) species per ecoregion area. Numbers may be adjusted on the basis of an ongoing process to
correct nomenclatural errors. Natural breaks (Jenk’s optimization) was the classification method used for figures (a)—(c).
This method identifies breakpoints between classes using a statistical formula that identifies groupings and patterns

inherent in the data.

highland lakes in Cameroon along with Africa’s Lake Tana;
northwestern and eastern Madagascar; freshwaters from
Turkey’s central Anatolia region, the northern British Isles, the
Philippines, Sri Lanka, India’s western Ghats, the southwest-
ern Balkans, and northwest Mediterranean; southwestern
Australia and nearly the entire island of New Guinea; Eurasian
lakes, including Baikal, Inle, and Sulawesi’s Lake Poso and
Malili system; Death Valley in the United States and Mexico’s
Pénuco system; and South America’s Iguacu River, Lake Tit-
icaca, and the freshwaters of both the Mata Atlantica and the
continent’s northwestern Pacific coast. Additionally, newly
available data show that some systems previously recognized
for high endemism, such as those of South America’s Guianas,
also exhibit exceptional richness.

Because our ecoregions cover all nonmarine waters, and
because they often exist as subdivisions of major river basins,
our results also highlight a number of smaller systems for the
first time in global analyses. Using finer-resolution data allowed
us to identify the high richness of the Congo’s Malebo Pool
and Kasai basin. Cuba and Hispaniola stand out for
endemism, along with the Amazon’s western piedmont and

410 BioScience * May 2008 / Vol. 58 No. 5

the Tocantins-Araguaia systems. The Tocantins-Araguaia, as
well as the highly endemic Sao Francisco, were defined as units
of analysis in Revenga and colleagues (1998), but fish data were
unavailable for those basins when that study was done.
Systems never before analyzed globally but recognized in
our results as exceptionally rich for fish include those of the
Malay Peninsula’s eastern slope and Japan. A large number of
ecoregions are identified for the first time for highly endemic
faunas, measured as percentage endemism. Newly identified
ecoregions with at least 50% endemism include Africa’s
Cuanza, Australia’s Lake Eyre Basin, Mexico’s Mayran-Viesca,
and New Zealand, as well as a large number of highly depau-
perate ecoregions such as Africa’s karstveld sink holes, Turkey’s
Lake Van, the Oman Mountains, western Mongolia, and
Hawaii.

Each of the biodiversity analyses that we offer here em-
phasizes different sets of ecoregions, suggesting that a single
measure of species diversity might overlook ecoregions of
important biodiversity value. In a comparative analysis of
biodiversity value, ecoregions are probably best evaluated
against others within the same region, with similar historical

www.biosciencemag.org
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and environmental characteristics, and of similar size to ac-
count for the typically positive relationship between river
discharge and fish species richness (Oberdorff et al. 1995).
Nonetheless, some systems, such as the Amazon and many of
Africa’s Rift Valley lakes, stand out by nearly any measure of
fish biodiversity and are indisputable global conservation
priorities.

Conservation applications

The ecoregion map and associated species data summarized
here have a number of conservation applications. At global
and regional scales the ecoregion map can be used to distin-
guish distinct units of freshwater biodiversity to be represented
in conservation efforts. The Convention on Wetlands, for
instance, requires that sites nominated as wetlands of inter-
national importance—with wetlands defined to include all
freshwaters—Dbe evaluated against a “biogeographic region-
alization” criterion (Ramsar Bureau 2006). Lack of a global
biogeographic scheme has stalled the application of this cri-
terion, but our global map and database may provide a nec-
essary framework for identifying broadscale gaps in protection.
Similarly, progress toward the establishment of representative
networks of freshwater protected areas, as called for by the third
TUCN World Conservation Congress, the fifth World Parks
Congress, and the seventh Meeting of the Conference of the
Parties to the Convention on Biological Diversity, can now be
measured using ecoregions as a proxy for finer-scale global
species or habitat distribution data. At a regional level, the
freshwater ecoregion map may be used as supplementary in-
formation for implementation of the European Union’s Wa-
ter Framework Directive (2000/60/EC), which requires a
characterization of surface water bodies and currently uses
regions defined by Illies (1978).

A primary use of ecoregions is as conservation planning
units (Higgins 2003). Our attribution of freshwater fish
species data to ecoregions is an important first step for data-
poor regions. Organizations or agencies with regional man-
dates may choose to compare biodiversity values across
ecoregions in the process of setting continental priorities
(Abell et al. 2000, Thieme et al. 2005). At the basin scale,
ecoregions can help to introduce biodiversity information into
water-resource or integrated-basin management activities
(Gilman et al. 2004). Where major basins are divided among
multiple freshwater ecoregions, whole-basin exercises can
use ecoregions as stratification units to ensure adequate rep-
resentation of distinct biotas. Where unconnected drainages
are combined into a single freshwater ecoregion, planners may
choose to consider a counterintuitive planning unit to in-
corporate biogeographic patterns. Freshwater ecoregions de-
fined in previous exercises have already been put to use by the
Nature Conservancy and WWF in numerous conservation
planning efforts across North America (e.g., Upper Mississippi;
Weitzell et al. 2003), South America (e.g., the Pantanal; de
Jesus 2003), and Africa (e.g., the Congo basin; Kamdem-
Toham et al. 2003).

www.biosciencemag.org
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Caveats and limitations

Ecoregions are delineated based on the best available infor-
mation, but data describing freshwater species and ecologi-
cal processes are characterized by marked gaps and variation
in quality and consistency. Data quality is generally consid-
ered high for North America, Australia, New Zealand, Japan,
western Europe, and Russia; moderate for Central America,
the southern cone of South America, southern and western
Africa, Oceania, and the Middle East; and poor for much of
southeastern Asia, central and eastern Africa, and South
America north of the Parana River basin.

Freshwater ecoregions are not homogeneous units. Within
individual ecoregions there will be turnover of species along
longitudinal gradients of river systems and across different
habitats such as flowing and standing-water systems. The
inclusion of multiple macrohabitat types within a given fresh-
water ecoregion is a marked departure from terrestrial ecore-
gions, which typically encompass a single vegetation-defined
biome (e.g., deciduous forests, evergreen forests, or scrub;
Wikramanayake et al. 2002).

Ecoregions are imperfect units for highlighting certain
highly distinct and highly localized assemblages occurring at
subecoregion scales. Examples include many peat swamps or
subterranean systems. Underground systems such as caves and
karsts may require their own planning framework, as ground-
water catchments may not correspond with the surface-water
catchments upon which our ecoregions are built.

For reasons of practicality and scale, our ecoregion frame-
work does not take into account the distributions of freshwater
species such as invertebrates, reptiles, and amphibians. This
is a limitation of the ecoregional approach presented here,
which is especially problematic for places such as isolated
islands where freshwater fish provide little information to
inform biogeographic delineation. We hope this taxonomic
omission will serve as motivation for generating and syn-
thesizing global data for other taxonomic groups to provide
complementary information for conservation planners, par-
ticularly when working at subecoregional scales. We recognize
that improved information in the future may warrant map re-
visions, and we highlight areas of greatest data uncertainty in
part to encourage enhanced research investment in those
places. We believe that the critical state of freshwater systems
and species argues against waiting for ideal biodiversity data
to be developed before generating urgently needed conser-
vation tools like the ecoregion map.

Shifting transition zones for species are common, and we
recommend that ecoregions be viewed as logical units for more
detailed analyses and strategies. Ecoregions are intended to de-
pict the estimated original extent of natural communities
before major alterations caused by recent human activities,
but original distributions can be difficult to reconstruct. As
new species are described, our understanding of distribution
patterns may also change. Ecoregional delineation is an iter-
ative process, and changes to ecoregion boundaries should be
incorporated as new information becomes available.
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There is no definitive, error-free data source for classifying
fish species as freshwater, brackish, or marine. We chose to use
the global FishBase habitat assignments, which are derived
from the literature, to ensure that any given species in our data-
base would be classified consistently wherever it occurred. We
recognize that errors of omission or commission may derive
from inaccuracies in the FishBase assignments as well as
from the habitat plasticity of some species. All species in-
formation provided to us by experts, regardless of habitat
assignment, is retained in our database for future analyses.

The preliminary richness and endemism numbers pre-
sented here are in some cases markedly different from exist-
ing estimates in the literature. For example, our tally for Lake
Malawi contains 431 described fish species, but other estimates
run as high as 800 or more (Thieme et al. 2005). Our omis-
sion of undescribed species, as well as the conservative
approach taken by experts in using only robust species
occurrence data, account for many of these lower-than-
expected numbers. Numbers of endemics may in some cases
be higher than expected because endemics were identified
strictly through a database query for unique occurrences,
and many species lists are undoubtedly incomplete or use
synonyms. We anticipate that many tallies will change with
further refinement of species lists but that the broad patterns
presented here will hold.

Conclusions

The newly available species data attributed to ecoregions has
important implications for prioritizing conservation invest-
ments. As one illustration, in 2005 the Global Environment
Facility (GEF), which spends more than $1 billion each year
on environmental projects, adopted a new resource allocation
framework. Terrestrial ecoregion maps and biodiversity data
were notable inputs to the framework, but parallel fresh-
water information to help guide investments was lacking.
The GEF framework fortunately leaves open the possibility
of incorporating freshwater ecoregions and biodiversity data
at a later date (GEF 2005).

In addition to providing data for scientific and conserva-
tion purposes, we aim to give the largest possible number of
people access to the ecoregion-level information collected in
association with the global map. The information will be
freely available on the Internet (www.feow.org) as well as in
brochures, posters, and other publications. The freshwater
ecoregion map covers virtually all land surfaces on Earth, so
people around the globe will have the opportunity to learn
about the freshwater systems where they live.

For most policymakers, water resource managers, and
even conservationists, freshwater biodiversity is more of an
afterthought than a central consideration of their work. The
freshwater ecosystem services that support the lives and liveli-
hoods of countless people worldwide are a far larger concern.
Yet freshwater biodiversity and ecosystem services are linked
through ecological integrity, and better-informed efforts to
conserve freshwater biodiversity should benefit human com-
munities as well. The freshwater ecoregions of the world map
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and associated species data begin to improve access to pre-
viously dispersed and difficult to access freshwater biodiver-
sity information. We hope that this set of products catalyzes
additional work toward a better understanding of freshwater
species distributions and—of equal if not more importance—
leads to a ramping up of freshwater conservation activity
and success.
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